If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying whatis + -1[9z + -1(16z + 9)] = 9 + (6z + 2) Reorder the terms: ahistw + -1[9z + -1(9 + 16z)] = 9 + (6z + 2) ahistw + -1[9z + (9 * -1 + 16z * -1)] = 9 + (6z + 2) ahistw + -1[9z + (-9 + -16z)] = 9 + (6z + 2) Reorder the terms: ahistw + -1[-9 + 9z + -16z] = 9 + (6z + 2) Combine like terms: 9z + -16z = -7z ahistw + -1[-9 + -7z] = 9 + (6z + 2) ahistw + [-9 * -1 + -7z * -1] = 9 + (6z + 2) ahistw + [9 + 7z] = 9 + (6z + 2) Reorder the terms: 9 + ahistw + 7z = 9 + (6z + 2) Reorder the terms: 9 + ahistw + 7z = 9 + (2 + 6z) Remove parenthesis around (2 + 6z) 9 + ahistw + 7z = 9 + 2 + 6z Combine like terms: 9 + 2 = 11 9 + ahistw + 7z = 11 + 6z Solving 9 + ahistw + 7z = 11 + 6z Solving for variable 'a'. Move all terms containing a to the left, all other terms to the right. Add '-9' to each side of the equation. 9 + ahistw + -9 + 7z = 11 + -9 + 6z Reorder the terms: 9 + -9 + ahistw + 7z = 11 + -9 + 6z Combine like terms: 9 + -9 = 0 0 + ahistw + 7z = 11 + -9 + 6z ahistw + 7z = 11 + -9 + 6z Combine like terms: 11 + -9 = 2 ahistw + 7z = 2 + 6z Add '-7z' to each side of the equation. ahistw + 7z + -7z = 2 + 6z + -7z Combine like terms: 7z + -7z = 0 ahistw + 0 = 2 + 6z + -7z ahistw = 2 + 6z + -7z Combine like terms: 6z + -7z = -1z ahistw = 2 + -1z Divide each side by 'histw'. a = 2h-1i-1s-1t-1w-1 + -1h-1i-1s-1t-1w-1z Simplifying a = 2h-1i-1s-1t-1w-1 + -1h-1i-1s-1t-1w-1z
| 2t^2-55t-350=0 | | -3x^2+16x-13=0 | | (x-2)*5=(2x-6)*3 | | 9y-21=-7+7y | | -2(-10)-9= | | 5x-15=6+2x | | (7x^2-13-1)-(9x^2+8)= | | 2+p=18 | | 2x+5+2x=(x+5)*3 | | 3t-14=-2+5t | | 116=n^2-2n-4 | | 5x+5x^2=200 | | 5x+2-3x=-3x+42 | | 7x-6+5(x-8)=14 | | 2*(3x-6)=-4x-22 | | 45x^2-80x^6= | | -(-3)(2)(-1)(-2)(1)= | | 6x-21=48+3x | | 7+-6x+-3x^2=0 | | -5(7m-6)=-50+5m | | (4y+9)(6y+y)=0 | | 5x+3=27+x | | 3x-11+3x=13x+5+x | | 8x-5(26-x)=0 | | 4x^3+2x^2=1 | | 7-(3x^2+6x)=0 | | 9x-4x^2+9=0 | | 2x+19=53 | | 3x^2-30x=75 | | 11a-12a+15a= | | 5+2m=g | | 93+6x=95+4x |